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Abstract

This paper examines the theoretical, analytical, and approximate solutions of the Caputo frac-
tional Volterra-Fredholm integro-differential equations (FVFIDEs). Utilizing Schaefer’s fixed-
point theorem, the Banach contraction theorem and the Arzelà-Ascoli theorem, we establish
some conditions that guarantee the existence and uniqueness of the solution. Furthermore, the
stability of the solution is proved using the Hyers-Ulam stability and Gronwall-Bellman’s in-
equality. Additionally, the Laplace Adomian decomposition method (LADM) is employed to
obtain the approximate solutions for both linear and non-linear FVFIDEs. The method’s effi-
ciency is demonstrated through some numerical examples.

Keywords: Caputo fractional derivative; Hyers-Ulam stability; Laplace Adomian decomposi-
tion method.
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1 Introduction

Over the last few decades, the applications of fractional calculus have flourished rapidly in
various fields referred to its memory effect’s property, and the developments of the newest frac-
tional operators which provide the appropriate environment to modeling the real-life problems
such as cancer disease [17], COVID-19 [2], and the transportation of solute in porous media [37].
Fractional integro-differential equations (FIDEs) have gained great attention for modeling some
complicated nonlinear phenomenons in a variety of domains, including science, engineering, elec-
tromagnetic, fluid-dynamic, traffic, and many more [42]. These equations with their nature, have
some complexity in proving the existence, uniqueness, stability of solutions, and finding the exact
and approximate solutions. Due to its complexity, many researchers have exclusively focused on
both theoretical and numerical aspects of these equations in their works.

Some recent publications have investigated the existence and uniqueness of solutions for var-
ious types of FIDEs. For instance, Hussain et al. [21] used the Banach fixed point theorem and
semi-group theory to study the existence of mild solution and controllability of semi-linear and
non-local FVFIDEs. Raja and Vijayakumar [32] proved the existence of mild solution of inclusion
type FVFIDEs with fractional order between 0 and 1 using the fixed point theorem. Laadjal and
Ma [26] employed the Banach and Krasnoselskii fixed point theorems to prove the existence and
uniqueness of non-linear boundary value Caputo FVFIDEs. Beni [33] presented the existence of
the solution of FVFIDEs subject tomixed boundary conditions using the contractionmapping the-
orem. They also obtained the approximate solutions using Legendre wavelets with the help of the
quadrature rule.

Additionally, Amin et al. [6] investigated the existence and uniqueness of non-linear FVFIDEs
using the fixed point approach. Verma and Kumar [40] employed the fixed point theorems and
the Banach contraction principle to study the existence and uniqueness of the solution of FVFIDEs
and solved it using the two-step Adomian decomposition method. Hamoud [18] examined the
existence and uniqueness of solutions for neutral types of FVFIDEs using the Leray-Schauder non-
linear alternative and the Krasnoselskii fixed point theorem. Khaldi et al. [24] applied Schauder’s
fixed-point theorem and the Banach contraction principle to study the existence of solutions for
non-linear ψ-Caputo FVFIDEs with non-local initial conditions and analyzed the Hyers-Ulam-
Rassias stability of solutions. Moreover, many researchers have investigated the stability of solu-
tion of FIDEs. Alam and Shah [3] applied the Hyers-Ulam stability (H.U. stability) to couple the
implicit FIDEs, while Shah and Gul [36] studied the different types of stability for the solution of
Caputo-Fabrizio FIDEs. Ismaael [22] used the fixed-point theorems to investigate the existence
and uniqueness of solution for the impulsive η-Hilfer non-linear FVFIDEs with multi-point frac-
tional boundary non-instantaneous conditions. Karande [23] proved the existence of solution
for the functional FIDEs used fixed-point theorem, the generalized Lipschitz, caratheodory and
monotonicity conditions.

Different analytical and numerical methods have been employed to approximate the solution
of FVFIDEs. Das et al. [12] employed the homotopy perturbation method to find the analytical
solutions of FVFIDEs. Ali et al. [4] presented the hybrid combination method using the Bernstein
and block-pulse functions wavelet method to approximate the solutions of FVFIDEs with mixed
boundary conditions. Hamoud and Ghadle [19] studied the existence and uniqueness of the so-
lution of Caputo FVFIDEs, and their convergence, and approximated the solution using themodi-
fiedAdomian decompositionmethod and themodified variational iterationmethod. Rahimkhani
and Ordokhani [31] employed the operational matrix of alternative Legendre functions with the
collocation method to approximate the solution of non-linear FVFIDEs with non-local conditions.
Amin et al. [7] used theHaar wavelet collocationmethod to solve FVFIDEs. Furthermore, various
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methods have been applied to address different types of FIDEs, such as the operational matrices
of Müntz-Legendre polynomials [35], block-pulse functions and Fibonacci polynomials [38], op-
erational matrices of the block pulse functions [34], operational matrices of the Lucas wavelets
and the Legendre-Gauss quadrature rule [13], the reproducing kernel method [14], the residual
power series method [27], the B-spline method [28], Laplace Adomian decomposition method
[9]. Other iterative methods can be found in [15, 29].

This paper deals with the initial value problem (IVP) of mixed FVFIDEs of the form:
cDα

0+W(s) = φ(s) + ρ

∫ s

0

∫ C

0

K(x, v)H(ω(v))dvdx,

W(0) = w0, W
′
(0) = w1,

(1)

where α ∈ (1, 2], 0 ≤ s, x ≤ C, φ : J = [0, C] → R, is a continuous function and K(x, v) represents
a continuous arbitrary kernel function, a continuous function H(W(s)) contains both linear and
non-linear parts, andW(s) is an unknown function. The operator cDα denotes Caputo’s fractional
derivative.

The equation of the form mentioned in (1) has been solved by Wazwaz [41] only with the
second integer order using various methods such as the variational iteration method, the series
solution method and the direct computation method. However, there has been no study on the
same equation in fractional order 1 < α < 2. Therefore, in this paper, we explore the existence,
uniqueness, and stability of solution for the IVP presented in (1). Furthermore, we use the Laplace
Adomian decomposition method (LADM) to obtain the approximate solution for the given equa-
tion.

This paper is organized as follows: In Section 1, we mention some related works. In Section
2, we provide the basic definitions and theorems related to fractional calculus. Section 3, we in-
troduce the theoretical results, we prove the existence and uniqueness of the solution of mixed
FVFIDEs, and then investigate the stability of the solution using the H.U. stability. Section 4 is
dedicated to finding the approximate solution by applying the LADM. In Section 5, we present
some numerical examples to demonstrate the practical results of the developed theorems. Finally,
in Section 6, we summarize our work in the conclusion.

2 Preliminary and Basic Definitions

In this section, we provide some important definitions and theorems in fractional calculus and
fixed-point theorem in Banach space.

Let the Banach space M = (J,R) denotes all continuous functions on J , such that for any
function W ∈ M, the norm ∥W(s)∥∞ = sup{|W(s)| : s ∈ J}.

Definition 2.1. [25] The Riemann-Liouville fractional integral of real order α > 0 of a function W(s) is
given by

Jα
a+W(s) =

1

Γ(α)

∫ s

a

(s− v)α−1W(v)dv,

where Γ is Euler’s Gamma function.
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Definition 2.2. [25] The Caputo fractional derivative of order α > 0 of a continuous function W(s) is
defined by

cDα
a+W(s) = Jn−α

a+

(
dn

dsn
W(s)

)
=

1

Γ(n− α)

∫ s

a

(s− v)n−α−1W(n)(v)dv, α > 0,

where n = [α] + 1 and Γ represents Gamma function.

The following properties are well known in fractional calculus [25]. Let α > 0 and β > 0, and
W ∈ L1[a, b]. Then,

Jα
a+J

β
a+W(s) = Jβ

a+J
α
a+W(s) = Jα+β

a+ W(s), (2)
cDα

a+ [Jα
a+W(s)] = W(s), (3)

Jα
a+ [cDα

a+W(s)] = W(s)−
n−1∑
k=0

W(k)(a)

k!
(s− a)k, for n− 1 < α ≤ n. (4)

Also, the fractional integral acts on a power function according to the following formula:

Jβ
a+(s− a)µ =

Γ(µ+ 1)

Γ(β + µ+ 1)
(s− a)β+µ, (5)

where µ > −1.

Theorem 2.1. [5] If U(s) and V(s) are piece-wise continuous functions on [0,∞]. Then, the Laplace
transform of the convolution of both functions is given by

L
(
(U ∗ V)(s)

)
= L(U(s))L(V(s)). (6)

Lemma 2.1. [5] If W (τ) is the Laplace transform of a function W(s), then for any δ > 0, the Laplace
transform of the Caputo fractional derivative c

aDδW(s) is given by

L
[
c
aDδW(s)

]
= τ δW (τ)−

m−1∑
j=0

τ δ−j−1W(j)(0), (7)

wherem = [δ] + 1.

Theorem 2.2. [43] [The Banach contraction principle] Let (X, d) be a complete metric space, and W :
X → X a contraction mapping (d(Wx,Wy) ≤ kd(x, y), where 0 < k < 1, for each x, y ∈ X). Then,
there exists a unique fixed point s of W in X , i.e., Ws = s.

Theorem 2.3. [30, 10] [The Schaefer fixed point theorem] Suppose that M = (X,R) is a Banach space.
Let Ω : M → M be a completely, continuous mapping. If the set {s ∈ X : s = λΩs for some λ ∈ (0, 1)}
is bounded, then Ω has a fixed point.

Theorem 2.4. [43] [Arzelà-Ascoli theorem] If a family W = {W(s)} in C(J,R) is uniformly bounded
and equicontinuous on J , and for any s∗ ∈ J, {W (s∗)} is relatively compact, then W has a uniformly
convergent subsequence {Wn(s)}∞n=1.
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Arzelà-Ascoli theorem is the key to the following result [43]: "A subset W in C(J,R) is rela-
tively compact if and only if it is uniformly bounded and equicontinuous on J".

Lemma 2.2. [1] [Gronwall-Bellman’s inequality] Let W(s) and h(s) be non-negative continuous func-
tions defined on I = [α, α+ h] and c be a non-negative constant. If

W(s) ⩽ c+

∫ s

α

h(v)W(v)dv, s ∈ I, (8)

then

W(s) ⩽ c ∗ exp
(∫ s

α

h(v)dv

)
, s ∈ I. (9)

3 Theoretical Results

In this section, we present some results related to the existence, uniqueness, and stability of
solution of IVP (1).

3.1 Existence and uniqueness

We suggest the following axioms:

(A1) LetH be a continuous function. There exists a constant L > 0, for each x, y ∈ R, such that

∥H(x)−H(y)∥ ≤ L∥x− y∥.

(A2) Let K(x, v) be a continuous arbitrary kernel function satisfies

K∗ = sup
x,v∈J

K(x, v) = ∥K(x, v)∥,

and φ(s) be a continuous bounded function, such that sups∈J |φ(s)| = ∥φ(s)∥.

(A3) LetH be a continuous and bounded function on a normed vector space, such that there exists
a constant z > 0, and for each s ∈ J ,W ∈ R, ∥H(W(s))∥ ≤ z∥W∥.

Lemma 3.1. Let 1 < α ≤ 2, and suppose that H,K and φ are arbitrary continuous functions defined on
M = (J,R). If W ∈ M = (J,R), and s ∈ J , then W satisfies the IVP (1) if and only if W satisfies the
integral equation,

W(s) = w0 + w1s+
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

+
ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(W(r))drdxdω.

(10)

Proof. Applying the Riemann-Liouville fractional integral of order α to Equation (1) gives

Jα
0+

(
cDα

0+W(s)
)
= Jα

0+(φ(s)) + ρJα
0+

(∫ s

0

∫ C

0

K(x, v)H(W(v))dvdx

)
. (11)
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Using Equation (4) in Equation (11) with a = 0 and n = 1, we have

W(s)−W(0)(0)−W(1)(0)s = Jα
0+(φ(s)) + ρJα

0+

(∫ s

0

∫ C

0

K(x, v)H(W(v))dvdx

)
. (12)

The result follows by substituting the initial conditions in Equation (12), thus completes the proof.

To prove ourmain results for the existence of solution, we convert the IVP (1) to the fixed point
problem by defining the operator ΩW : M = (J = [0, C],R) → M = (J,R) as

ΩW(s) = w0 + w1s+
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

+
ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(W(r))drdxdω. (13)

Then, using the Schaefer fixed point theorem and Arzelà-Ascoli theorem in Theorems 2.3 and 2.4,
respectively, we demonstrate the existence of solution in the following theorem.

Theorem 3.1. LetH,K and φ be arbitrary continuous functions on C(J,R) and satisfy the Axioms (A1)
- (A3). Let ΩW : M → M be the operator defined in Equation (13). Then, the IVP (1) has at least one
solution on J .

Proof. The operator ΩW is completely continuous and bounded are proved as follows:

Step 1: The operator ΩW is continuous. Let {Wn} be a sequence such that Wn → W in M.
Then, for each s ∈ J , we have

∥ΩWn
(s)− ΩW(s)∥

≤ ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

|K(x, r)|∥H(Wn(r))−H(W(r))∥drdxdω

≤ ρL

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

sup
s∈J

|K(x, r)| ∥Wn(s)−W(s)∥ drdxdω

≤ R∥Wn(s)−W(S)∥ ,

where,

R :=
ρLK∗Cα+2

Γ(α+ 2)
. (14)

By the continuity of H and K, and Wn → W , we have

∥ΩWn
(s)− ΩW(s)∥∞ −→ 0, as n −→ ∞.

Step 2: The operator ΩW is bounded onM. It is sufficient to demonstrate that for

ε > 0, ∃ Q > 0, ∋ ∀ W ∈ Nb(ε) := Bε = {W ∈ M = (J,R) : ∥W∥∞ ≤ ε},
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we have ∥ΩW(s)∥∞ ≤ Q. Thus, ∀ s ∈ J , we have

∥ΩW(s)∥∞

≤ |w0 + w1s|+
1

Γ(α)

∫ s

0

(s− ω)α−1 sup
ω∈J

|φ(ω)|dω +
ρ

Γ(α)

∫ s

0

(s− ω)α−1

×
∫ ω

0

∫ C

0

sup
x,r∈J

|K(x, r)| sup
r∈J

|H(W(r))|drdxdω

≤ ∥w0∥+ ∥w1∥C +
Cα

αΓ(α)
∥φ(s)∥+ ρCα+2K∗

α(α+ 1)Γ(α)
∥H(W(s))∥.

By using Axioms (A3), we have

∥ΩW(s)∥∞ ≤ ∥w0∥+ ∥w1∥C +
Cα

Γ(α+ 1)
∥φ(s)∥+ ρCα+2K∗

Γ(α+ 2)
z∥W∥

≤ ∥w0∥+ ∥w1∥C +
Cα

Γ(α+ 1)
∥φ(s)∥+ ρCα+2K∗

Γ(α+ 2)
z ε := Q.

(15)

Step 3: The operatorΩW is equicontinuous. Let s1, s2 ∈ J be arbitrary, such that s1 < s2. Then,

∥ΩW (s2)− ΩW (s1)∥

≤ ∥w1(s2 − s1)∥+
1

Γ(α)

(∫ s2

0

(s2 − ω)
α−1 −

∫ s1

0

(s1 − ω)
α−1

)
∥φ(s)∥dω

+
ρ

Γ(α)

(∫ s2

0

(s2 − ω)
α−1 −

∫ s1

0

(s1 − ω)
α−1

)
×
∫ ω

0

∫ C

0

∥K(x, r)∥∥H(W(r))∥drdxdω.

Adding ±
∫ s1
0

(s2 − s)
α−1

ds for each term inside the parenthesis, and after simplifica-
tion, we have

∥ΩW (s2)− ΩW (s1)∥

≤ ∥w1(s2 − s1)∥+
1

Γ(α)

(∫ s2

s1

(s2 − ω)
α−1

+

∫ s1

0

(s2 − ω)
α−1

− (s1 − ω)
α−1

)
∥φ(w)∥dw +

ρ

Γ(α)

(∫ s2

s1

(s2 − ω)
α−1

+

∫ s1

0

(s2 − ω)
α−1

− (s1 − ω)
α−1

)
×
∫ ω

0

∫ C

0

∥K(x, r)∥∥H(W(r))∥drdxdω

≤ ∥w1∥ (s2 − s1) +
(sα2 − sα1 )

Γ(α+ 1)
∥φ(s)∥+

(
sα+1
2 − sα+1

1

)
ρCK∗

Γ(α+ 2)
z ε.

Hence, ∥ΩW (s2)− ΩW (s1)∥ → 0 as s2 −→ s1.
Step 4: To show that ℧ = {W ∈ M : W = δΩW} is a bounded set in M. Let W ∈ ℧, then

W = δΩW , for some δ ∈ (0, 1). Thus, for each s ∈ J , we have

W(s) = δ(w0 + w1s) +
δ

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

+
ρδ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(W(r))drdxdω.
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By using the boundedness property of ∥ΩW∥, with 0 < δ < 1, and taking the norm to
both sides, we have

∥W(s)∥ = ∥δΩW∥ = ∥δ∥∥ΩW∥| < ∥ΩW∥ ≤ Q,

where Q is defined in Equation (15). Thus, ∥W(s)∥ ≤ Q, which proves that ℧ is
bounded.

From Steps 1-3, the operator ΩW is continuous, bounded, and equicontinuous, hence by The-
orem 2.4, we deduce that ΩW : M → M is a completely continuous operator. Together with Step
4, and Theorem 2.3, we conclude that ΩW has a fixed point which is a solution of the IVP (1).

Theorem3.2. LetH,K andφ be arbitrary continuous functions onM and satisfy the Axioms (A1) - (A3),
and ΩW : M → M is a completely continuous bounded operator defined in Equation (13). Furthermore,

suppose that there exists a constant R :=

(
ρLK∗Cα+2

Γ(α+ 2)

)
< 1, then the IVP (1) has a unique solution on

J .

Proof. For s ∈ J and U ,V ∈ M, we have

∥ΩU (s)− ΩV(s)∥ ≤ ρ

Γ(α)

∫ s

0

(s− ω)α−1

∥∥∥∥∥
∫ ω

0

∫ C

0

K(x, r)[H(U(r))−H(V(r))]drdx

∥∥∥∥∥ dω
≤ ρL

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

∥K(x, r)∥∥U(r)− V(r)∥drdxdω

≤ ρLK∗

Γ(α)

(∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

drdxdω

)
∥U(s)− V(s)∥

≤ ρLK∗Cα+2

Γ(α+ 2)
∥U(s)− V(s)∥

≤ R∥U(s)− V(s)∥.

Since R < 1, we conclude that ΩW is a contraction. By the Banach contraction theorem (Theo-
rem 2.2), we deduce that Ω has a unique fixed point which is a solution to the IVP (1).

3.2 Stability of solution

This section investigates the H.U. stability for the solution of the IVP (1).

Definition 3.1. [8] LetH,K and φ be arbitrary continuous functions onM and satisfy the Axioms (A1)
- (A3). The IVP (1) is H.U. stability, if there exist ζH,K,φ ∈ R : ζH,K,φ > 0, such that for any ϵ > 0 and
for any solution V ∈ M of the inequality

∣∣∣∣cDα
0+V(s)− φ(s)− ρ

∫ s

0

∫ C

0

K(x, v)H(V(v))dvdx
∣∣∣∣ ⩽ ϵ, s ∈ J,

V(0) = v0, V ′(0) = v1,

(16)

there exist W ∈ M, a unique solution of the IVP (1) with

∥V(s)−W(s)∥ ≤ ζH,K,φε. (17)
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Theorem 3.3. [H.U. stability] Let H,K and φ be arbitrary continuous functions on M and satisfy the
Axioms (A1) - (A3). If there exist a positive constant ζ, such that

ζ := ζH,K,φ :=
Cα

Γ(α+ 1)
× exp

(
ρ LK∗Cα+2

Γ(α+ 1)

)
,

then the IVP (1) is H.U. stability.

Proof. Let ϵ > 0 and let W ∈ C(J,R) be a unique solution satisfying Equation (1) with initial
conditions w0 = V(0) = v0, w1 = V ′(0) = v1. By Lemma 3.1, W(s) satisfies

W(s) = w0 + w1s+
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω +
ρ

Γ(α)

∫ s

0

(s− ω)α−1

×
∫ ω

0

∫ C

0

K(x, r)H(W(r))drdxdω.

(18)

Let V ∈ M be a function satisfies Equation (16). Integrating the inequality in Equation (16) from
0 to s gives ∣∣∣∣V(s)−v(0)− v′(0)s− 1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

− ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω
∣∣∣∣ ≤ ϵ sα

Γ(α+ 1)
.

(19)

Using the initial conditions yields∣∣∣∣V(s)− w0 − w1s−
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

− ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω
∣∣∣∣ ≤ ϵ sα

Γ(α+ 1)
.

(20)

To complete our proof, using the Definition 3.1 and Equation (18), |V(s)−W(s)| can be computed
as

|V(s)−W(s)| =
∣∣∣∣V(s)− w0 − w1s−

1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω − ρ

Γ(α)

∫ s

0

(s− ω)α−1

×
∫ ω

0

∫ C

0

K(x, r)H(W(r))drdxdω

∣∣∣∣.
Adding the terms (

± ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω

)
, (21)

and simplify

|V(s)−W(s)| =
∣∣∣∣V(s)± ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω −W(s)

∣∣∣∣
≤
∣∣∣∣V(s)− w0 − w1s−

1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

− ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω
∣∣∣∣

+
ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

∣∣∣∣K(x, r) [H(V(r))−H(W(r))]

∣∣∣∣drdxdω.
(22)
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Using the inequality (20) into Equation (22) gives

|V(s)−W(s)|

≤ ϵ sα

Γ(α+ 1)
+

ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

|K(x, r)∥H(V(r))−H(W(r))|drdxdω.
(23)

Taking the supremum on both sides of Equation (23) and using Axioms (A1) and (A2) gives

∥ V(s)−W(s) ∥≤ ϵ Cα

Γ(α+ 1)
+

∫ s

0

ρ LK∗C2

Γ(α)
(C − ω)α−1∥V(s)−W(s)∥dω. (24)

Applying Gronwall-Bellman’s inequality, Lemma 2.2, to the inequality (24) and simplify, we have

∥ V(s)−W(s) ∥ ≤ ϵ Cα

Γ(α+ 1)
× exp

(∫ s

0

ρ LK∗ C2

Γ(α)
(C − ω)α−1dω

)
≤ ϵ Cα

Γ(α+ 1)
× exp

(
ρ LK∗ Cα+2

Γ(α+ 1)

)
≤ ϵ ζ.

Thus, from Definition 3.1, we conclude that the IVP (1) is H.U. stability.

Next, we prove the stability of solution of IVP (1) using the definition of H.U. stability (Defi-
nition 3.1). We need the following remark.

Remark 3.1. [8] A function V ∈ M is a solution of inequalities (16) if and only if there exist a function
ψ ∈ M such that

1. |ψ(s)| ≤ ε, s ∈ J ,

2. cDα
0+V(s) =

(
φ(s) + ρ

∫ s

0

∫ C

0
K(x, v)H(V(v))dvdx

)
+ ψ(s),

3. V(0) = v0, V ′(0) = v1.

In views of Lemma 3.1, we obtain the following lemma.

Lemma 3.2. Let 1 < α ≤ 2, and suppose that the functionsH,K, φ ∈ M satisfy the Axioms (A1) - (A3).
Let ψ ∈ M satisfies the conditions in Remark 3.1. Then, the following Caputo FIDEs

cDα
0+V(s) =

(
φ(s) + ρ

∫ s

0

∫ C

0

K(x, v)H(V(v))dvdx
)
+ ψ(s),

V(0) = v0 = w0 + ε, V ′(0) = v1 = w1 + ε,

(25)

is equivalent to the integral equation

V(s) = v0 + v1s+
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

+
ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω

+
1

Γ(α)

∫ s

0

(s− ω)α−1ψ(ω)dω.

(26)
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Proof. Applying the Riemann-Liouville fractional integral of order α to Equation (25) gives

Jα
0+(

cDα
0+V(s)) = Jα

0+(φ(s)) + ρJα
0+

(∫ s

0

∫ C

0

K(x, v)H(V(v))dvdx
)
+ Jα

0+(ψ(s)). (27)

Using Equation (4) in Equation (27) with a = 0 and n = 1, we have

V(s)− V(0)(0)− V(1)(0)s = Jα
0+(φ(s)) + ρJα

0+

(∫ s

0

∫ C

0

K(x, v)H(W(v))dvdx

)
+ Jα

0+(ψ(s)).

(28)

Since ψ ∈ M satisfies the conditions in Remark 3.1, substitute the initial conditions V(0),V ′(0) into
Equation (28), we obtain Equation (26), and hence the proof completes.

Theorem 3.4. [H.U. stability] Assume that the functions H,K, φ ∈ M satisfy the Axioms (A1) - (A3).

If ζH,K,φ =
1

1−R

(
1 + C +

Cα

Γ(α+ 1)

)
> 0, where R is given in Equation (14), then the IVP (1) is

H.U. stability.

Proof. Let W(s) be a solution of IVP (1) and V(s) be a solution of inequality (16). By using
Lemma 3.2 and Remark 3.1, for any s ∈ J ,

|V(s)−W(s)|

=

∣∣∣∣v0 + v1s+
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω +
ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(V(r))drdxdω

+
1

Γ(α)

∫ s

0

(s− ω)α−1ψ(ω)dω − w0 − w1s−
1

Γ(α)

∫ s

0

(s− ω)α−1φ(ω)dω

− ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

K(x, r)H(W(r))drdxdω

∣∣∣∣
≤ |v0 − w0|+ |v1 − w1|s+

ρ

Γ(α)

∫ s

0

(s− ω)α−1

∫ ω

0

∫ C

0

|K(x, r)||H(V(r))−H(W(r))|drdxdω

+
1

Γ(α)

∫ s

0

(s− ω)α−1|ψ(ω)|dω.

Therefore,

∥V(s)−W(s)∥ ≤ ∥v0 − w0∥+ ∥v1 − w1∥C +
ρ LK∗ Cα+2

Γ(α+ 2)
∥V(s)−W(s)∥+ Cαε

Γ(α+ 1)
,

≤ ∥v0 − w0∥+ ∥v1 − w1∥C +R∥V(s)−W(s)∥+ Cαε

Γ(α+ 1)
,

≤ 1

1−R

(
1 + C +

Cα

Γ(α+ 1)

)
ε.

Let

ζH,K,φ =
1

1−R

(
1 + C +

Cα

Γ(α+ 1)

)
.

Hence,

∥V(s)−W(s)∥ ≤ ζH,K,φ ε.

By Definition 3.1, the IVP (1) is H.U. stability.
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4 LADM Technique

In this section, we describe the application of LADM in solving Equation (1). This method
is considered a simple iterative technique that combines the Laplace transform method and the
Adomian decomposition method. The advantage of the method depends on its ability to provide
an analytical solution for the complexity of non-linear FIDEs. Moreover, it yields a good approxi-
mation to the exact solution with low-cost computation and demonstrates the fast convergence of
solutions. Note that the function H(W(s)) can be written as H(W(s)) = RW(s) + NW(s), where
RW(s) is the linear part, andNW(s) is the non-linear part. The second part of Equation (1) can be
expressed as ∫ s

0

∫ C

0

K(x, v)H(W(v))dvdx =

∫ s

0

∫ C

0

K(x, v)[RW(v) +NW(v)]dvdx. (29)

Apply the Laplace transformation operator L, where L(W(s)) = W (τ), and Lemma 2.1 on (1)
and (29), gives

ταW (τ)− τα−1W(0)− τα−2W ′(0) = L(φ(t)) + ρ L

(∫ s

0

∫ C

0

K(x, v)[RW(v) +NW(v)]dvdx

)
,

which reduces to

W (τ) =
w0

τ
+
w1

τ2
+

1

τα
L(φ(s)) + ρ

τα
L

(∫ s

0

∫ C

0

K(x, v)[RW(v) +NW(v)]dvdx

)
. (30)

Consider the unknown solutionW(s) as

W(s) =

∞∑
i=0

Wi(s), (31)

where Wi(s), i = 0, 1, 2, . . . are evaluated recursively. The non-linear term NW(s) is decomposed
into the Adomian polynomial Pn in the form

NW(s) =

∞∑
n=0

Pn(s), (32)

where Pn, n = 0, 1, 2, . . . is defined by

Pn(s) =
1

n!

dn

dλn
NW

(
n∑

i=0

λiWi(s)

)∣∣∣∣∣
λ=0

. (33)

Also, the linear part can be written as

RW(s) = RW

( ∞∑
i=0

Wi(s)

)
. (34)

From (30), we have

L

( ∞∑
i=0

Wi(s)

)
=
w0

τ
+
w1

τ2
+

1

τα
L(φ(s))

+
ρ

τα
L
(∫ s

0

∫ C

0

K(x, v)

[
RW

( ∞∑
i=0

Wi(v)

)
+

∞∑
i=0

Pi(v)

]
dvdx

)
.

(35)

480



K. Alsa’di et al. Malaysian J. Math. Sci. 18(3): 469–489 (2024) 469 - 489

LetW0 be defined as all terms out of the integral sign, and the componentsWi, i = 1, 2, . . . of the
unknown function W(s) are evaluated recursively as follows:

L(W0(s)) =
w0

τ
+
w1

τ2
+

1

τα
L(φ(s)), (36)

and

L (Wi+1(s)) =
ρ

τα
L
(∫ s

0

∫ C

0

K(x, v) [RWi
(v) + Pi(v)] dvdx

)
, i = 0, 1, 2, . . . . (37)

Now, apply the inverse Laplace transform to Equation (36), and the definition ofAdomian polyno-
mial in Equation (33) to find P0(s). Next, apply the recursive relation in Equation (37) to compute
W1(s). Completing in the same process, evaluating P1(s), P2(s) . . . andW2(s),W3(s) . . . gives

W0(s) = L−1

(
w0

τ
+
w1

τ2
+

1

τα
L(φ(s))

)
, (38)

Wi+1(s) = L−1

(
ρ

τα
L
(∫ s

0

∫ C

0

K(x, v) [RWi
(v) + Pi(v)] dvdx

))
, i = 0, 1, 2, . . . . (39)

Finally, we obtain the series solution of W(s) which is expressed by Equation (31). In this work,
we use the Mathematica and Matlab programs to obtain the numerical results. The convergence
of LADM in Hilbert space was proved by [11], and in Banach space by [9, 5, 20].

5 Illustrative Examples

The following illustrative examples are provided to support the above developed theorems,
and to show the effectiveness of the suggested method.

Example 5.1. Consider the following non-linear FIDEs
cDα

0+W(s) = − 25

504
s2 +

749

360
s+

∫ s

0

∫ 1

0

(x− v)(W(v))2 −W(v))dvdx,

W(0) = 1, W ′(0) = 0, 1 < α ⩽ 2, s ∈ [0, 1].

(40)

The exact solution is W(s) =
1

3
s3 + 1.

Solution: Using Theorem 3.1, (40) has at least one solution, since H(W(s)), φ(s) , and
K(x, v) = (x − v) are continuous functions satisfying the conditions (A1)-(A3), such that
L = 1, K∗ = 1, ∥φ(s)∥ = 2.13016, and H(W(s)) is bounded on [0, 1] with z = 2. More-
over, (40) has a unique solution and satisfies Theorem 3.2, since for each value of α ∈ (1, 2],
there exist a constant R ∈ [0.166667, 0.5]. Furthermore, using Theorem 3.3, if we choose
ζ ∈ [0.824361, 2.71828), then (40) is H.U. stability.

Applying the LADM as in Section 4, using (30)-(39), we obtain

W0(s) = L−1

(
1

τα
L
(
−25

504
s2 +

749

360
s

)
+

1

τ

)
,
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Wi+1(s) = L−1

(
1

τα
L
(∫ s

0

∫ 1

0

(x− v) [Pi(v)−Wi(v)] dvdx

))
, i = 0, 1, 2, ...,

where Pn(s) =
1
n!

dn

dλn

(∑n
i=0 λ

iWi(s)
)2∣∣∣

λ=0
. Then, the approximate solution can be expressed as a

truncation seriesW(s) =
∑n

i=0 Wi(s). Table 1 shows the comparison of the approximate solutions
of LADM, Adomian decomposition method (ADM) (we use the same technique of ADM [39]),
and homotopy analysis method (HAM) [16], for N = n = 10, α = 1.5. It can be seen that LADM
gives more accurate results. In Table 2, for the integer order α = 2, it is observed that LADM
provides more accurate results as compared to HAM and ADM.

Table 1: Comparison between the approximate solutions of LADM, ADM, and HAM at N = 10 and α = 1.5 for Example 5.1.

s Exact Approximate solution
solution LDAM ADM HAM [16]

0 1.000000000 1.000000000 1.000000000 1.000000000
0.1 1.000333333 1.0016633590 1.0018141266 1.0016059061
0.2 1.002666667 1.0094599621 1.0102811890 1.0099757479
0.3 1.009000000 1.0262079792 1.0283838147 1.0282561621
0.4 1.021333333 1.0540859024 1.0583734561 1.0585577810
0.5 1.041666667 1.0949840452 1.1021613866 1.1026362642
0.6 1.072000000 1.1506202268 1.1614487831 1.1620897325
0.7 1.114333333 1.2225962736 1.2377908721 1.2384279470
0.8 1.170666667 1.3124306243 1.3326342999 1.3330973985
0.9 1.243000000 1.4215791127 1.4473411780 1.4474901221
1 1.333333333 1.5514491321 1.5832056304 1.5829467357

Table 2: Absolute errors for LADM and HAM for N = 10 and α = 2 for Example 5.1.

s Absolute error
LADM HAM [16]

0.1 0.0000000000 3.9968×10−14

0.2 0.0000000000 3.0997×10−13

0.3 0.0000000000 9.9987×10−13

0.4 0.0000000000 2.3000×10−12

0.5 2.22045×10−16 4.3401×10−12

0.6 2.22045×10−16 7.2400×10−12

0.7 0.0000000000 1.1070×10−11

0.8 2.22045×10−16 1.5900×10−11

0.9 4.44089×10−16 2.1700×10−11

1 4.44089×10−16 2.8588×10−11

Example 5.2. Consider the following non-linear FIDEs
cDα

0+W(s) =
√
s+

∫ s

0

∫ 1

0

xv(W(v)2 +W(v))dvdx,

W(0) = 0, W ′(0) = 0, 1 < α ⩽ 2, s ∈ [0, 1].

(41)
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The exact solution is W(s) = 1 + s2/2 + s3/6 + 0.053s4.

Solution: Using Theorem 3.1, (41) has at least one solution, since H(W(s)), φ(s), and K(x, v)
are continuous functions satisfying the conditions (A1)-(A3), such that L = ∥W(s1)+W(s2)∥2 ≤
2M2, where ∥W(s)∥ ≤M ,M positive constant, and for s, s1, s2 ∈ [0, 1]. Also, K∗ = 1, ∥φ(s)∥ = 1,
and H(W(s)) is bounded on [0, 1] with z = L|s1 − s0|, for some s1, s0 ∈ [0, 1]. Moreover, (41)
has a unique solution and satisfies Theorem 3.2, since for each value of α ∈ (1, 2], there exist a

constantR =
2M2

Γ(α+ 2)
< 1. Furthermore, using Theorem3.3, if we choose ζ ∈ [0.824361, 2.71828),

then (41) is H.U. stability.

Applying the LADM as in Section 4, using (30)-(39), we obtain

W0(s) = L−1

(
1

τα
L
(√
s
))

,

Wi+1(s) = L−1

(
1

τα
L
(∫ s

0

∫ 1

0

(xv) [Pi(v) +Wi(v)] dvdx

))
, i = 0, 1, 2, ...,

where Pn(s) = 1
n!

dn

dλn

(∑n
i=0 λ

iWi(s)
)2∣∣∣

λ=0
. The approximate solution is expressed as a trunca-

tion seriesW(s) =
∑n

i=0 Wi(s). Table 3 indicates that as α approaches 2, the approximate solution
approaches the exact solution.

Table 3: The approximate solutions of LADM with N = 10 and different values of α for Example 5.2.

s Exact LADM
solution α = 1 α = 1.5 α = 1.8 α = 2

0.1 1.0237897099 1.3569879309 1.1000165642 1.0429610557 1.0237897099
0.2 1.0673057489 1.5059313665 1.2001874032 1.1058262807 1.0673057489
0.3 1.1237202080 1.6224426329 1.3007746338 1.1794299508 1.1237202080
0.4 1.1906620121 1.7240885435 1.4021202254 1.2611842983 1.1906620121
0.5 1.2668292930 1.8182730316 1.5046298518 1.3498231505 1.2668292930
0.6 1.3514149115 1.9092700221 1.6087639812 1.4446532848 1.3514149115
0.7 1.4438995165 2.0000157079 1.7150319463 1.5453011436 1.4438995165
0.8 1.5439553073 2.0927641855 1.8239876128 1.6515998079 1.5439553073
0.9 1.6513942138 2.1893800318 1.9362260391 1.7635299038 1.6513942138
1 1.7661371433 2.2914869341 2.0523807938 1.8811852664 1.7661371433

Example 5.3. Consider the following non-linear FIDEs
cDα

0+W(s) = s+ 1 +

∫ s

0

∫ 1

0

xvW(v))3dvdx,

W(0) = 1, W ′(0) = 0, 1 < α ⩽ 2, s ∈ [0, 1].

(42)

The exact solution is W(s) = 1 + s2/2 + s3/6 + 0.053s4.
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Solution: Using Theorem 3.1, (42) has at least one solution, since H(W(s)), φ(s), and K(x, v)
are continuous functions satisfying the conditions (A1)-(A3), such thatL = 1,K∗ = 1, ∥φ(s)∥ = 1,
and H(W(s)) is bounded on [0, 1] with z = 1. Moreover, for each value of α ∈ (1, 2], there exist a
constantR =

1

Γ(α+ 2)
< 1, such that (42) satisfies Theorem 3.2. Furthermore, using Theorem 3.3,

if we choose ζ = 1
Γ(α+1) × exp( 1

Γ(α+1) ) ∈ [0.824361, 2.71828), then (42) is H.U. stability.

Applying the LADM as in Section 4, using (30)-(39), we obtain

W0(s) = L−1

(
1

τα
L (s+ 1) +

1

τ

)
,

Wi+1(s) = L−1

(
1

τα
L
(∫ s

0

∫ 1

0

xvPi(v)dvdx

))
, i = 0, 1, 2, ...,

where Pn(s) = 1
n!

dn

dλn

(∑n
i=0 λ

iWi(s)
)3∣∣∣

λ=0
. The approximate solution is expressed as a trunca-

tion seriesW(s) =
∑n

i=0 Wi(s). Figure 1 exhibits the approximate solutions of LADM for different
values of α, and notes that when α = 2, the approximate solution of Equation (42) coincides with
the exact solution.

Figure 1: Approximate solution for LADM at different values of α and N = 6 for Example 5.3.

Example 5.4. Consider the following linear FIDEs
cDα

0+W(s) = −15s+

∫ s

0

∫ 1

0

xvW(v)dvdx,

W(0) = 1, W ′(0) = 0, 1 < α ⩽ 2, s ∈ [0, 1].

(43)

The exact solution is W(s) = 1− 5

2
s3.
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Solution: Using Theorem 3.1, (43) has at least one solution, since H(W(s)) = W(s), φ(s) =
−15s , and K(x, v) = xv are continuous functions satisfies the conditions (A1)-(A3), such that
L = 1, K∗ = 1, ∥φ(s)∥ = 15, and H(W(s)) is bounded on [0, 1] with z = 1. Moreover, for ρ =

1, C = 1, there exist a constant 0.166667 ≤ R =
1

Γ(α+ 2)
≤ 0.5 depends on the different values of

α ∈ (1, 2], such that (42) satisfying Theorem 3.2. Furthermore, using Theorem 3.4, if we choose
ζ > 0, such that ζ ∈ [3, 6), where α ∈ (1, 2], then (43) is H.U. stability.

Applying the LADM as in Section 4, using (30)-(39), we obtain

W0(s) = L−1

(
1

τ
+

1

τα
L(−15s)

)
,

Wi+1(s) = L−1

(
1

τα
L
(∫ s

0

∫ 1

0

xvWi(v)dvdx

))
, i = 0, 1, 2, ...,

where Pn(s) = 0. The approximate solution is expressed as a truncation series W(s) =∑n
i=0 Wi(s). Figure 2 exhibits the approximate solutions of LADM for different values of α and

notes that when α = 2, the approximate solution of LADM coincides with the exact solution.

Figure 2: Approximate solution for LADM at some values of α and N = 10 for Example 5.4.

6 Conclusion

This paper successfully proved the existence and uniqueness of solutions for FVFIDEs in the
Caputo sense in Banach space, employing the fixed-point theorems under some conditions. The
stability of solutionswas constructedwithH.U. stability using various techniques. The LADMwas
applied to solve the given equation, and some numerical examples were provided to demonstrate
the effectiveness of LADM, showcasing its superiority in approximating the solutions as compared
to ADM and HAM. The provided examples also supported the constructed theorem.
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